

Determine the genotypes of the offspring for the ZFP57 SNP rs365052

Investigate how the SNP affects DNA methylation and its regulation

Investigate the relationship between DNA methylation at *ZFP57* and the IQ of the offspring from EpiFASSTT study

If any neurocognitive developments found have any links between the ZFP57 gene, DNA methylation, and the genotype of the informative SNP (rs365052).

POSITIVES & NEGATIVES OF FA ON PREGNANCY

POSITIVES **NEGATIVES** FA has been proven Over-

supplementation of to have many positive effects on FA, may have not only pregnancy negative effects on the health of the but also overall mother (8) health (1) Not getting enough Folate in the body FA leads to the increases the stability of DNA, decrease of the which is a crucial maturation of RBCs

EFFECTS ON CONTINUED FOLIC ACID SUPPLEMENTATION DURING THE SECOND AND THIRD TRIMESTERS OF PREGNANCY **ON CHILDREN'S NEUROCOGNITIVE DEVELOPMENT AT 11 YEARS.**

Ulster University

Ulster University School of Biomedical Science Niamh Tracey, Luke Hilman, Mirka Ondicova, Colum P Walsh, Helene McNulty, Rachelle E Irwin

"Folic acid supplementation in late gestation alters DNA methylation in offspring and neurocognitive developmental outcomes are associated with the ZFP57

genotype".

OVERVIEW

BACKGROUND

What is Folic Acid?

Folate is key to helping form DNA and RNA. It is also involved in the metabolism of proteins

- Has a key role in breaking down an amino acid called homocysteine which can cause harmful effects if it is present within the body in high quantities.
- Folate is also needed for the production of healthy red blood cells (RBC) and is essential during abrupt growth, for example, pregnancy and the development of a foetus. (1)

• Folic acid (FA) supplementation is known to reduce occurrence of neural tube defects (NTD)

 This is the 2nd most common malformation in humans affecting the development of the central nervous system.

TRO.

METHODOLOGY

	Bisulfite Conversion PCR Reaction Gel Electrophoresis Methylation Pyrosequencing	Converts unmethylated Cytosines to Uracil Converts the Uracils to Thymine at target sequences Separates the amplified DNA fragments based on size Measures the % of DNA methylation at CpG sites of interest		Can easily distinguish between methylated from unmethylated cytosines Amplifies target sequence potentially hundreds of thousands of times Determines the presence/absence of the target sequence within the sample Gives overall area of methylation
	Genotyping Pyrosequencing	Uses DNA to detect allele presence of SNP	├	Shows % allelic presence and the genotype of the SNP
1. • Methylation patterns in human blood measured using molecular techniques within <i>ZFP57</i> region	SULTS 2. • Samples indicated to have a GG genotype at rs365052 were analyzed further using methylation pyrosequencing.	1. Heterozygous Methylated ZFP57 Clos Allele quantification pyrosequencing rs2747429 C:51%; T:49% F: 51%		Fully Methylated Homozygous Clone Allele quantification pyrosequencing rs2747429 C:0%, T:100% rs365052 Informative SNP E: Sine E: Sine

				Kruskal-Wallis H	57.804	
Ranks	Cord blood ZFP57 Genotype	N	Mean Rank	df	2	
Av. % Meth. 6 CpGs ZFP57	CC	13	12.85	Asymp. Sig.	<.001	
An a mean o oposizi i or	CG	32	31.13	 a. Kruskal Wallis Test b. Grouping Variable: Cord blood ZFP57 Genotype 		
	GG	48	66.83			
	Total	93				

Case Processing Summary	Cord blood ZFP57	Valid		Missing		Total	
	Genotype	Ы	Percent	N	Percent	N	Percent
Av. % Meth. 6 CpGs ZFP57	CC	13	100.0%	0	0.0%	13	100.0%
	CG	32	100.0%	0	0.0%	32	100.0%
	GG	48	100.0%	0	0.0%	48	100.0%

