

Higher Specialist Diploma

Haematology

September 2025

Short Answer Questions

60 minutes

Attempt all Four Questions

Instructions to Candidates

1. Record your candidate number and HSD discipline on the front sheet of the answer booklet.
2. Record your candidate number, the question number and the page number in the spaces provided on the answer sheets.
3. Begin each new answer on a new page.
4. Each question is worth 25 marks.

1. You are seeking accreditation for a haematology laboratory test for which formal EQA is not available. Describe how you would ensure quality assurance of this test, and what issues you may face.
2. Identify the interfering substances and conditions that can affect the MCH and MCHC and describe how these would be overcome
3. You have recently been appointed as a Senior Biomedical Scientist within an area of Haematology. Devise a standardised draft SOP template for an investigation in your new area. Include brief explanations for why each section has been included in the SOP using named examples.
4. You identify an unexplained increase in immature granulocytes on the analyser. How would you interpret this finding and what could be the underlying pathology?

Higher Specialist Diploma

Haematology

September 2025

Essay Paper

120 minutes

Attempt 2 out of 5 Questions

Instructions to Candidates

1. Record your candidate number and HSD discipline on the front sheet of the answer booklet.
2. Record your candidate number, the question number and the page number in the spaces provided on the answer sheets.
3. Begin each new question on a new page.
4. Each question is worth 100 marks.

1. Critically discuss the value of genetic analysis in the diagnosis, monitoring and treatment of selected haematological malignancies
2. Your laboratory has recently switched from a low-prevalence area for the sickle cell and thalassaemia screening programme to a high prevalence area. Critically discuss how this would be managed and the implications for the laboratory
3. Critically discuss the measurement and result interpretation of D-Dimers.
4. Critically discuss the use and value of mixing studies in the haemostasis laboratory
5. Critically evaluate laboratory methods used to provide a differential diagnosis of vitamin B₁₂ deficiency from other macrocytic anaemias.

Higher Specialist Diploma

Haematology

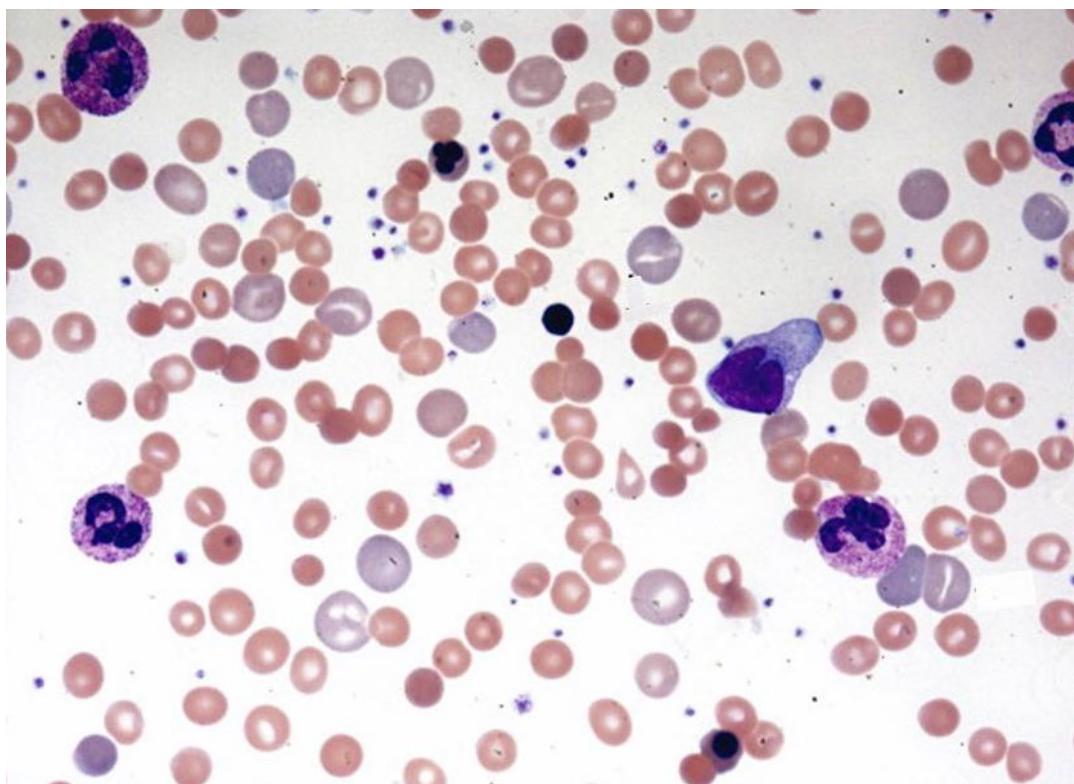
September 2025

Case Studies

120 minutes

Attempt all Case Studies

Instructions to Candidates


1. Record your candidate number and HSD discipline on the front sheet of the answer booklet.
2. Record your candidate number and the page number in the spaces provided on the answer sheets.
3. Begin **each new case study on** a new page.
4. Each case study is worth 100 marks.
5. For these case study questions you are strongly advised to answer the questions as they arise during the case study to avoid later information impacting adversely on your answers to the earlier questions by presuming an “outcome”.

SEEN CASE STUDY

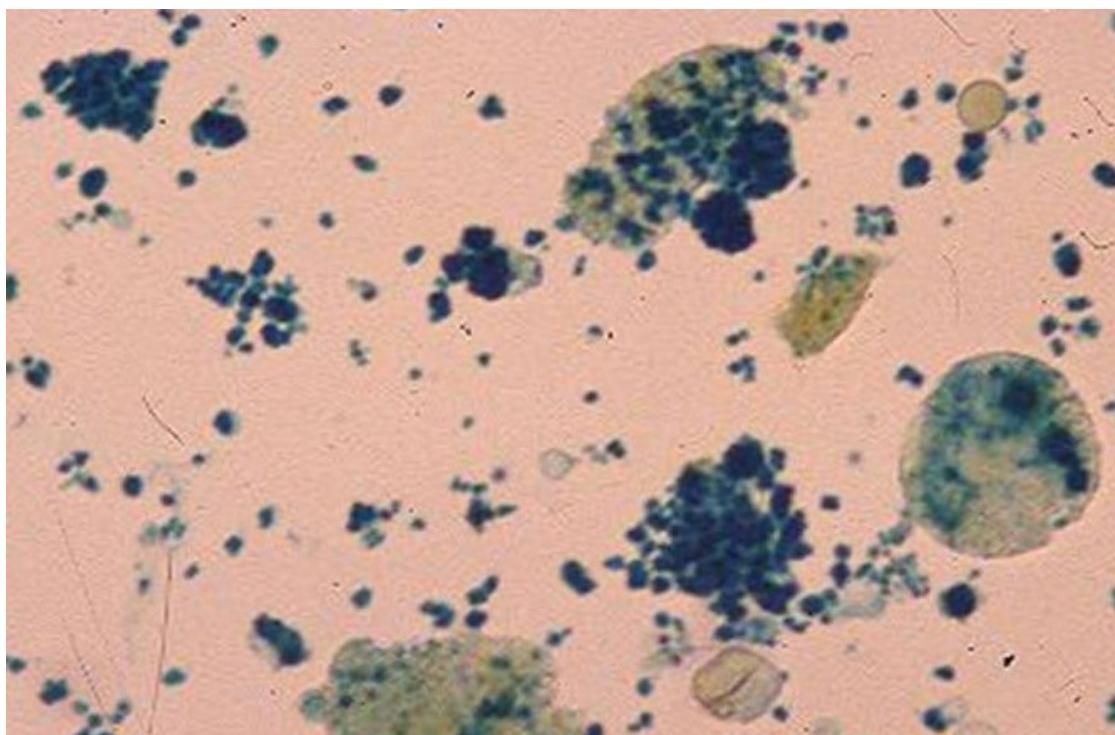
1.

A 42 year old man presented with a nine-day history of increasing lethargy, malaise, dizziness, muscle and joint pain and brown urine. Clinical examination revealed jaundice and mild hepatosplenomegaly. Six years previously he had been successfully treated with chemotherapy for Hodgkin lymphoma. His FBC results and a representative field from a Romanowsky stained peripheral blood film are shown below.

Parameter	Result	Units	Reference interval
WBC	19.8	$\times 10^9/L$	4.0 – 11.0
Neutrophils	16.3	$\times 10^9/L$	2.0 – 7.0
Hb	60	g/L	120 – 160
MCV	95	fL	80 - 99
Platelets	382	$\times 10^9/L$	150 - 400

- Comment on the FBC results and blood film appearances. (10%)
- Suggest and justify an initial diagnosis. (10%)
- Is it possible to exclude Evan's Syndrome at this stage? Justify your answer. (5%)

The results of follow-up analyses are given below. The direct antiglobulin test was strongly positive for IgG, moderately positive for C3 and negative for IgM. The coagulation screen sample was rejected by the laboratory due to the plasma exhibiting marked haemolysis.


Parameter	Result	Units	Reference interval
Reticulocytes	370	$\times 10^9/L$	25 - 125
Haptoglobins	Undetectable	mg/dL	95 - 240
LDH	1760	IU/L	90 - 210
ALT	22	IU/L	5 - 45
AST	31	IU/L	10 - 50
Total bilirubin	155	$\mu\text{mol}/L$	<17
Direct bilirubin	7	$\mu\text{mol}/L$	<5

d. Comment on the follow-up results (10%)

e. Revise, refine or confirm your original diagnosis correlating all results to pathophysiology. (25%)

f. Discuss the rejection of the coagulation screen sample (10%)

A Perl's Prussian Blue stain was performed on the deposit from a sample of the patient's centrifuged urine and a representative field from the slide shown below.

g. What is the principle of this staining method? (5%)

h. Interpret the Perl's Prussian Blue stain (5%)

i. What does the Perl's Prussian Blue result tell us about the patient's pathological processes. Discuss the occurrence of this result in this type of anaemia. (15%)

j. What other tests may be appropriate and why? (5%)

UNSEEN CASE STUDIES

2.

A 45 year old patient is seen in his local surgery complaining of recent shortness of breath. His GP requested a full blood count and coagulation screen, performed in the local hospital laboratory.

Full Blood Count		
	Result	Reference Range
Red cell count ($\times 10^{12}/L$)	4.5	4.3-5.7
Haemoglobin (g/L)	140	133-167
Mean Cell Volume (fL)	90	77-98
Mean Cell Haemoglobin (pg)	31	27-34
Platelets ($\times 10^9/L$)	250	143-400
White Blood Cell count ($\times 10^9/L$)	7.3	4.0-10.0
Neutrophils ($\times 10^9/L$)	4.3	2.0-7.0
Lymphocytes ($\times 10^9/L$)	2.8	1.0-3.0

Haemostasis Investigations		
	Result	Reference Range
Prothrombin Time (s)	13.0	10-14
Activated partial Thromboplastin Time (s)	32.0	24-34
Fibrinogen (g/L)	3.5	1.5-4.0

a. Describe the findings of this initial set of results. (10%)

A few days later, the patient attends A&E at your hospital complaining of chest pain and shortness of breath. He is tachycardic, and examination reveals swelling of his right calf. The clinician requests a further FBC, CS and a D-Dimer.

Full Blood Count		
	Result	Reference Range
Red cell count ($\times 10^{12}/L$)	4.5	4.2-5.8
Haemoglobin (g/L)	140	120-160
Mean Cell Volume (fL)	90	77-98
Mean Cell Haemoglobin (pg)	31	27-34
Platelets ($\times 10^9/L$)	250	140-400
White Blood Cell count ($\times 10^9/L$)	10.0	4.0-10.0
Neutrophils ($\times 10^9/L$)	7.0	2.0-7.0
Lymphocytes ($\times 10^9/L$)	2.8	1.0-3.0

Haemostasis Investigations		
	Result	Reference Range
Prothrombin Time (s)	13.0	9-11
Activated partial Thromboplastin Time (s)	34.0	22-30
Fibrinogen (g/l)	3.5	1.5-4.0
D-Dimer (ng/ml FEU)	600	<500

- b. Describe the findings of this follow up set of results. (10%)
- c. Can you suggest a diagnosis based on these results so far? (10%)
- d. The patient is age 45 – would you change your decision if patient was age 75. Explain your reasoning. (10%)
- e. What reasons could be behind any discrepancy between the 1st and 2nd set of results? (15%)
- f. The patient is referred for a VQ scan and is diagnosed with a PE. Your haematologist states he wouldn't have requested a D-Dimer test given the patients clinical details – why might this be? (5%)
- g. The patient is started on Apixaban, and his GP requests a thrombophilia screen. Your haematologist cancels the request whilst he is still on treatment – what reasons would he have? (10%)

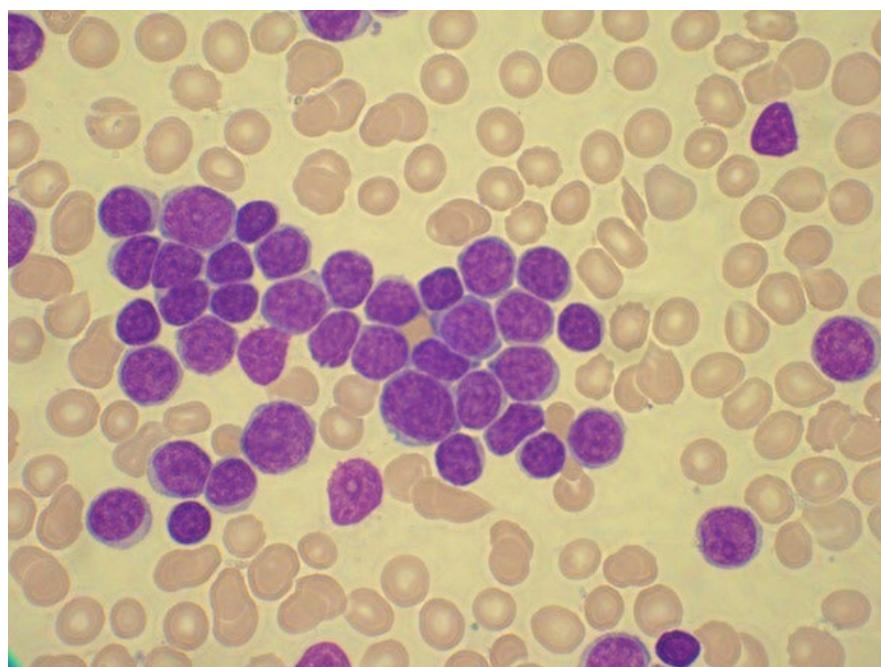
The patient is treated for 6 months. His GP then requests a thrombophilia screen again, after he has stopped apixaban for a week. The following results are obtained:

	Result	Reference Range
Protein C activity iu/dl	100	50-150
Protein S activity iu/dl	100	65-135
Protein S free antigen iu/dl	80	55-145
Antithrombin activity iu/dl	100	80-120
FV Leiden screen	FVL absent	-
P20210A screen	P20210A absent	-
DRVVT test ratio	2.0	0.8-1.2
DRVVT confirm ratio	1.2	0.8-1.2
Anticardiolipin IgG ug/ml	80	0-40
B2Gp1 IgG ug/ml	100	0-30

h. Comment on these results. (15%)

i. Would you carry out any further testing? (5%)

j. The patient is restarted anticoagulation on warfarin – explain this choice. (5%)


k. The patient's warfarin is monitored in his GP surgery using POC device. After an INR result of 4.5, a sample is sent to his local hospital for checking and the INR comes back as 3.5. Comment on this finding. (5%)

3.

A 68 year-old male presents to his GP with a three month history of weight loss (approx. 5kg), increasing lethargy, night sweats and unilateral cervical lymphadenopathy. Physical examination revealed hepatosplenomegaly, pallor and slight jaundice. The GP requested a full blood count which generated the following results:

Parameter	Result	Reference Range
RBC	2.78	4.3-5.7x10 ¹² /L
Haemoglobin	85	133-167 g/L
MCV	103	77-98 fL
HCT	0.31	0.35-0.53 L/L
MCH	31	26-33pg
MCHC	285	330-370 pg/L
Plt	62	143-400 x10 ⁹ /L
WBC	220.6	4.0-10.0 x10 ⁹ /L
Neutrophils	16.2	2.0-7.0 x 10 ⁹ /L
Lymphocytes	97	1.0-3.0 x 10 ⁹ /L
Monocytes	3.24	0.2-1.0 x 10 ⁹ /L
Eosinophils	0.32	0.02-0.5 x 10 ⁹ /L
Basophils	0.54	0.02-0.1 x 10 ⁹ /L
Large unstained cells	103.3	0.00 x 10 ⁹ /L

A representative field from a Romanowsky stained blood film from the FBC sample is shown below.

- a. Comment on the FBC results and the field captured from the patient's peripheral blood film. (20%)

- b. Based upon the initial information provided from the presentation, FBC and blood film, outline and justify the possible differential diagnoses for this patient. (20%)

- c. Predict the features you would expect to see in the patient's bone marrow trephine biopsy. (10%)

Following the full blood count and blood film results, immunophenotyping of peripheral blood cells was requested. The table below provides an outline of the results.

CD antigen	Result
CD5	positive
CD10	negative
CD19	positive
CD20	positive
FMC7	strong
CD79b	positive
CD22	weak
CD23	negative
CD25	weak
CD200	positive
Surface IgM	strong

d. Critically discuss the value of immunophenotyping these cells and how it might be employed effectively in this case. (10%)

e. Cytogenetic analysis demonstrated the presence of t(11;14)(q13; q32).

(i) What is the diagnostic significance of t(11;14)(q13;q32)? (10%)

(ii) Provide the names of the genes involved in the reported translocation and explain their role in this pathology. (10%)

Further examination using immune-histochemical techniques demonstrated the proportion of ki-67 positive nuclei at 47% with immune-reactivity against p53.

f. Explain what these results represent in the context of this case. (15%)

g. Provide concluding remarks outlining this patient's diagnosis and prognosis. (5%)