

# **Higher Specialist Diploma**

## Haematology

# **Examination - September 2022**

Short-answer questions

## 60 minutes

# Attempt all four questions

### Instructions to candidates

- 1. Record your candidate number and HSD discipline on the front sheet of the answer booklet
- 2. Record your candidate number, the question number and the page number in the spaces provided on the answer sheets
- 3. Begin each new question on a new page
- 4. Each question is worth 25 marks

- 1. You have been asked to establish a sample acceptance policy for coagulation samples in your department. Briefly describe your policy and justify your decisions.
- 2. A 21-year-old female presents to A&E with unwell. Over the following days she has a number of full blood counts performed with the results outlined below.

| Parameter | Reference Range                 | 17.04.2022 | 18.04.2022 | 19.04.2022 | 20.04.2022 |
|-----------|---------------------------------|------------|------------|------------|------------|
| Hb        | (115-165 g / L)                 | 126        | 94         | 97         | 96         |
| WBC       | (4.0-11.0 x10 <sup>9</sup> /L)  | 8.7        | 4.7        | 4.3        | 4.4        |
| PLT       | (150-450x10 <sup>9</sup> /L)    | 99         | 93         | 91         | 90         |
| RBC       | (3.80-5.50x10 <sup>12</sup> /L) | 3.93       | 2.86       | 2.89       | 2.93       |
| НСТ       | (0.37-0.48)                     | 0.366      | 0.263      | 0.269      | 0.273      |
| MCV       | (80-100 fL)                     | 93.1       | 91.8       | 92.9       | 93.2       |

Comment on the initial full blood count and outline the further actions you would take, if any. Briefly discuss the trend of the follow-up counts and outline further actions.

The sample dated 20.04.2022 has the clinical details hyperemesis; how would this impact the initial full blood count? And what treatment may have occurred to create the follow up results?

- 3. You are experiencing quality issues with the manual staining method used for staining blood films, bone marrow aspirates, and cytospins within your laboratory. Briefly discuss the initial actions you would take during your investigation of the problem. Following your investigation, you determine that you need to replace one of your stains. Outline the actions you would take and the considerations you would make.
- 4. Your laboratory participates in the Rapid Diagnostic Techniques for Malaria NEQAS scheme and over the last 18 months you have returned the following results. Review the results and briefly outline any abnormalities and the actions you would take.

| Exercise | Reported Result | NEQAS result | Species            |
|----------|-----------------|--------------|--------------------|
| 2102RD1  | Negative        | Positive     | P.falciparum 0.75% |
| 2102RD2  | Negative        | Negative     |                    |
| 2103RD1  | Negative        | Positive     | P.knowlesi 7.5%    |
| 2103RD2  | Negative        | Positive     | P.falciparum 3.1%  |
| 2104RD1  | Negative        | Negative     |                    |
| 2104RD2  | Negative        | Negative     |                    |
| 2201RD1  | Negative        | Negative     |                    |
| 2201RD2  | Negative        | Positive     | P.knowlesi 2.1%    |
| 2202RD1  | Positive        | Negative     |                    |
| 2202RD2  | Negative        | Positive     | P.falciparum 0.03% |



# **Higher Specialist Diploma**

# Haematology

# **Examination - September 2022**

## **Essay Paper**

# 120 minutes

# Attempt 2 out of 5 questions

Instructions to candidates

- 1. Record your candidate number and HSD discipline on the front sheet of the answer booklet
- 2. Record your candidate number, the question number and the page number in the spaces provided on the answer sheets
- 3. Begin each new question on a new page
- 4. Each question is worth 100 marks

- 1. Critically discuss the use and limitations of screening tests in the haemostasis lab.
- 2. Critically discuss the D-Dimer assay and its use in the investigation of coagulation disorders.
- 3. Using appropriate examples, evaluate the significance of abnormalities in nuclear morphology and the association these abnormalities with named haematological disorders.
- 4. Evaluate the role of reticulocyte identification and enumeration in the elucidation of the causes of anaemia.

5. Critically discuss detection and quantification of HbF and the significance of differing levels of HbF in healthy subjects and those with haemoglobinopathies.



# **Higher Specialist Diploma**

## Haematology

## **Examination - September 2022**

Case studies

## 120 minutes

### Attempt all case studies

### Instructions to candidates

- 1. Record your candidate number and HSD discipline on the front sheet of the answer booklet
- 2. Record your candidate number, the question number and the page number in the spaces provided on the answer sheets
- 3. Begin each new case study on a new page
- 4. Each question is worth 100 marks
- 5. For these case study questions you are strongly advised to answer the questions as they arise during the case study to avoid later information impacting adversely on your answers to the earlier questions by presuming an "outcome".

### SEEN CASE STUDY

A 58-year-old female patient was referred for a full blood count by her GP as part of an investigation for recurrent bacterial infection, gate ataxia, progressive weakness and paraesthesia of her upper and lower limbs. She had undergone gastric bypass surgery four years previously and had experienced rapid and sustained weight loss.

1.

| Parameter              | Result | Reference range | Units                 |
|------------------------|--------|-----------------|-----------------------|
| Red cell count         | 3.2    | 3.9 – 5.0       | X 10 <sup>12</sup> /L |
| Haemoglobin            | 85     | 118 - 148       | g/L                   |
| Mean Cell Volume       | 108    | 77 - 98         | fL                    |
| Platelets              | 152    | 143 - 400       | x 10 <sup>9</sup> /L  |
| White Blood Cell Count | 3.38   | 4.0 - 10.0      | x 10 <sup>9</sup> /L  |
| Neutrophils            | 1.8    | 2.0 - 7.0       | x 10 <sup>9</sup> /L  |
| Lymphocytes            | 1.1    | 1.0 - 3.0       | x 10 <sup>9</sup> /L  |
| Monocytes              | 0.4    | 0.2 - 1.0       | x 10 <sup>9</sup> /L  |
| Eosinophils            | 0.05   | 0.02 - 0.5      | x 10 <sup>9</sup> /L  |
| Basophils              | 0.03   | 0.02 - 0.1      | x 10 <sup>9</sup> /L  |

a. Examine the patient's Full Blood Count results and identify the abnormal features. Indicate possible causes of these red cell findings. Justify your answer. (10 marks)

Based upon these results, a blood smear was produced and evaluated. An image from this smear is shown below.



b. Identify the white cell feature shown above and identify the range of conditions this feature is associated with. (10 marks)

Given the clinical and laboratory findings, haematinics were investigated. The results of these investigations are shown below.

| Parameter | Result | Reference range | Units    |
|-----------|--------|-----------------|----------|
| B12       | 165    | 160 – 925       | ng / L   |
| Folate    | 15     | >7              | nmol / L |
| Ferritin  | 243    | 28 - 365        | μg / L   |

Despite these findings, the GP decided to prescribe a course of IM injections of hydroxocobalamin over a four-month period. The patient was administered 1 mg three times a week for two weeks, then 1 mg every two months. After four months, the patient's condition had not improved. Her repeat FBC results are shown below:

| Parameter              | Result | Reference range | Units                 |
|------------------------|--------|-----------------|-----------------------|
| Red cell count         | 2.9    | 3.9 – 5.0       | X 10 <sup>12</sup> /L |
| Haemoglobin            | 78     | 118 - 148       | G/L                   |
| Mean Cell Volume       | 104    | 77 - 98         | fL                    |
| Platelets              | 157    | 143 - 400       | x 10 <sup>9</sup> /L  |
| White Blood Cell Count | 2.52   | 4.0 - 10.0      | x 10 <sup>9</sup> /L  |
| Neutrophils            | 0.7    | 2.0 - 7.0       | x 10 <sup>9</sup> /L  |
| Lymphocytes            | 1.2    | 1.0 - 3.0       | x 10 <sup>9</sup> /L  |
| Monocytes              | 0.5    | 0.2 - 1.0       | x 10 <sup>9</sup> /L  |
| Eosinophils            | 0.08   | 0.02 - 0.5      | x 10 <sup>9</sup> /L  |
| Basophils              | 0.04   | 0.02 - 0.1      | x 10 <sup>9</sup> /L  |

c. Compare the results from the initial and current FBC investigations. What do these results indicate and justify why IM hydroxocobalamin was administered? (10 marks)

Due to her declining results, and the refractory nature of her condition, it was decided that a bone marrow investigation would be conducted. This revealed the following:

| Bone marrow<br>aspirate | Left-shifted granulocytic maturation was noted with 4%–6% blasts.<br>Morphologically, blasts appeared myeloid. Auer rods were not<br>present. Features of dysgranulopoiesis included asynchronous<br>maturation. Many of the early granulocytic precursors contained<br>multiple small cytoplasmic vacuoles. The erythroid lineage<br>demonstrated left-shifted maturation with many cells containing<br>numerous cytoplasmic vacuoles. There were mild megaloblastoid<br>changes and dyserythropoietic changes including nuclear<br>irregularities, nuclear lobulation, and nuclear fragmentation. |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | Perls' stain: revealed slightly increased iron stores and 2% ring sideroblasts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Bone marrow             | Trephine demonstrated a hypercellular marrow of 70% - 80% with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| trephine                | all lineages represented. Megakaryocytes appeared normal and were adequate for cellularity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Based upon the bone marrow investigations, propose the most likely diagnoses. Are genetic atypia associated with any of the likely causes? If so, please describe the most commonly associated genetic findings. (30 marks)

The results of genetic analysis were all normal and the following karyotype: 46, XX was reported. Consequently, the patient was referred to a multidisciplinary team meeting. As the patient had previously undergone bariatric surgery, it was proposed the patient should undergo extended biochemical investigations to exclude nutritional deficiency as a cause of the symptoms. An excerpt of these results is shown below:

| Parameter      | Result | Reference range | Units    |
|----------------|--------|-----------------|----------|
| Calcium        | 2.61   | 2.2 – 2.63      | Mmol / L |
| Iron           | 7      | 11-38           | µmol / L |
| Copper         | 8      | 12 - 25         | µmol / L |
| Caeruloplasmin | 19     | 16 – 45         | g/L      |
| B12            | 220    | 160 – 925       | ng / L   |
| Folate         | 17     | >7              | nmol / L |
| Zinc           | 9      | 11 - 19         | μmol /L  |
| Vit D          | 16     | >25             | nmol / L |
| CRP            | 25     | <5              | mg / L   |

- e. Please interpret these results.
- f. Is there anything in these additional tests that would require you to re-evaluate your diagnosis and what actions could be taken to demonstrate the definitive diagnosis.
  (10 marks)
- g. Provide a brief overview of the pathogenesis of this condition. (20 marks)

(10 marks)

### **UNSEEN CASE STUDIES**

2.

A set of blood samples arrive in the laboratory with a request for a full blood count and clotting screen. No clinical details are provided. Results are given below.

| Full Blood count                              |        |                 |  |
|-----------------------------------------------|--------|-----------------|--|
|                                               | Result | Reference range |  |
| Red cell count (x10 <sup>12</sup> / L)        | 4.5    | 4.3-5.7         |  |
| Haemoglobin (g / L)                           | 140    | 133-167         |  |
| Mean Cell Volume (fL)                         | 90     | 77-98           |  |
| Mean Cell Haemoglobin (pg)                    | 35     | 28-40           |  |
| Platelets (x10 <sup>9</sup> /L)               | 250    | 143-400         |  |
| White Blood Cell count (x10 <sup>9</sup> / L) | 7.3    | 4.0-10.0        |  |
| Neutrophils (x10 <sup>9</sup> / L)            | 4.3    | 2.0-7.0         |  |
| Lymphocytes (x10 <sup>9</sup> / L)            | 2.8    | 1.0-3.0         |  |

### Initial Full Blood Count Investigations

#### **Haemostasis Investigations**

| Haemostasis                      |        |                 |
|----------------------------------|--------|-----------------|
|                                  | Result | Reference range |
| Prothrombin Time (s)             | 18.0s  | 11-14s          |
| Activated partial Thromboplastin | 45.0   | 24-34 s         |
| Time (s)                         |        |                 |
| Fibrinogen (g / l)               | 2.0    | 1.5-4.0         |

- a. Describe the findings of this initial set of results. What possible causes could account for these results? (15 marks)
- Based on these results alone, what further tests would you recommend justify your choices.
  (15 marks)
- c. The fibrinogen result is from a PT-derived method, as your lab manager has decided that this result should be reported for each patient. Is this a satisfactory approach? Justify your decision.
  (10 marks)
- A Clauss fibrinogen assay give a result of 0.6g/l. How does this result affect your suggested diagnosis? (10 marks)

 Further tests were performed – comment on the utility or contribution of these tests, and for each set of findings (A and B) suggest possible causes for this patients results. (30 marks)

| Test / assay       | Reference range | А               | В               |
|--------------------|-----------------|-----------------|-----------------|
| Thrombin time      | 12-16s          | 60s             | 16s             |
| Reptilase          | 14-18s          | 45s             | 18s             |
| Fibrinogen antigen | 2.0-4.0g / I    | 2.4g / I        | 0.8g / I        |
| D-Dimer            | <500ng / ml FEU | 500 ng / ml FEU | 500 ng / ml FEU |
| DRVVT              | Ratio <1.2      | Ratio 1.1       | Ratio 2.2       |

f. For each set of findings, describe how you would clarify the cause of the abnormal results. What clinical information might be associated with each of these conditions? (20 marks)

3.

Upon return from a 4-month trip abroad, an 8-year-old boy presents with increasing tiredness and lethargy, which his parents say is similar to cousins on both sides of the family. On examination he appears well: there is no fever. A blood sample was obtained and was sent for a full blood count and ESR. Results are as follows.

| Analyte                | Result (units)             | Reference range |
|------------------------|----------------------------|-----------------|
| Haemoglobin            | 123 g / L                  | 133 – 167       |
| Red blood cell count   | 5.5 x 10 <sup>12</sup> / L | 4.3 – 5.7       |
| Haematocrit            | 0.42                       | 0.35 – 0.53     |
| MCV                    | 76 fL                      | 77 - 98         |
| МСН                    | 22.4 pg                    | 26 – 33         |
| МСНС                   | 293 pg / L                 | 330 – 370       |
| ESR                    | 8 mm / first hour          | <10             |
| RDW                    | 14.8 %                     | 10.3 -15.3      |
| Reticulocytes          | 135 x 10 <sup>9</sup> / L  | 25 – 125        |
| White blood cell count | 7.6 x 10 <sup>9</sup> / L  | 4 - 10          |
| Platelets              | 325 x 10 <sup>9</sup> / L  | 150 - 400       |

a. Describe the abnormalities.

b. Based on these results alone, propose and justify an initial diagnosis. (5 marks)

c. List potential causes of your diagnosis.

(5 marks)

(5 marks)

A representative field from a Romanowsky stained blood film is shown below:



- d. Describe the abnormalities in the blood film and their implications for red cell biology. (20 marks)
- e. In view of the results of the blood film, refine your preliminary diagnosis, giving your reasoning. (35 marks)
- f. Justify which additional tests are required to confirm a diagnosis and use these to propose final potential diagnoses. (30 marks)